NLP Complete Notes — Tauqueer Alam
UNIT -1
Computing with Language: Texts and Words

This is one of the first chapters when learning NLP using Python (especially with
NLTK).

It focuses on how computers handle text, and how we can analyze language data
computationally.

Let’s break it down

What It Means

“Computing with Language” means using Python programs to:

« Process large collections of text (called corpora),

o Count and search words,

« Analyze word patterns and frequencies,

« Understand structure and meaning in human language.

So the goal is to use Python to treat language as data and do useful computations on it.

Common NLP Tasks Here

Task Description Example

. . - . "Hello world!"™ - ["Hello",
Tokenization Splitting text into words or sentences world", "iv]

i . . h : “P h ED)
Counting Finding frequency of each word Count how many times “Python
Words appears
Concordance Find occurrences of a word and its  Find all places where “science”

surrounding words occurs in a text
Collocation Commonly occurring word pairs “Machine learning”, “New York”

Shows where words appear inthe  Plot “freedom” and “war” in a

Dispersion Plot text novel



A Closer Look at Python: Texts as Lists of Words

Once you have text data, you need to represent and manipulate it.
In Python, text can be treated as:

« Strings (continuous sequences of characters), or
« Lists of words (tokens).

Texts as Lists

If you split a text into words using sp1it () or NLTK’s tokenizer, you get a list:

sentence =

words = sentence.split()

print(words)

Now you can use Python list operations:

print(words[2])

print(words[-1])

print(len(words))

print(sorted(set(words)))

Why Treat Text as a List?
Because:

« You can loop, count, slice, and search words easily.
« It helps in feature extraction, frequency distribution, and pattern matching.



Example: Word Frequency

nltk FregDist

text =
words = text.split()

fdist = FregDist(words)

print(fdist.most_common(-))

This tells you which words appear most frequently — very useful in text analysis.

Common Python List Operations for NLP

Operation  Example Result
Indexing words [1] 2nd word
Slicing words [1:3] subset of words

Membership 'Python' in words True
Concatenation words + ['rocks!'] add new words
Iteration for w in words: loop through text

Example Combined

nltk
nltk FregDist

nltk.tokenize word tokenize

sentence =

tokens = word tokenize(sentence)

print( , tokens)
print( , tokens[a])

print( ,» FregDist(tokens))




Computing with Language: Simple Statistics

This topic introduces basic statistical analysis on text data — one of the most important
foundations for NLP and Data Science.

What It Means

You learn how to use mathematics and statistics to extract useful information from
language — like word frequency, richness of vocabulary, or word distributions.

It’s about quantifying how language behaves.

Common Statistical Measures in NLP

Concept Description Example
I(:Fr[e)?;incy Distribution How often each word appears  “Python” appears 50 times
. . . Ratio of unique words to total ~ 1en (set (words)) /

Lexical Diversity words len (words)

V\{orql Length Average or histogram of word Mean word length = 5.2

Distribution lengths

Conditional Ereauenc Frequency of words under How often "news" occurs
9 Y certain conditions after “fake”

Example in Python (Using NLTK

nltk FregDist
nltk.corpus gutenberg

gutenberg.words(

FreqDist(words)

, fdist.most common(-))
» len(set(words)) / len(words))




OUTPUT

Why Important?
Simple statistics give us:
« Insights about text structure (how repetitive or rich it is)

« Data for feature engineering in ML models
« Basis for topic modeling or document comparison

Back to Python: Making Decisions and Taking Control

Now we switch back to Python concepts that help control program flow — essential for
building NLP pipelines that make decisions automatically.

What It Means
Here you learn how to use:

« Conditional statements (if, elif, else)

e Loops (for, while)

« Functions (def)

o Comprehensions (like [w for w in words if len(w) > 5])

These let your program make decisions, filter data, and react to text patterns
dynamically.



Example 1 — Using Conditions

word =

word.endswith(

print(

print(

Output: Ends with 'on'

Example 2 — Using Loops in Text Processing

sentence =

words = sentence.split()

words :
len{w) >

print(w)

OUTPUT:
learning
Natural
Language

Processing



Why Important?
Because NLP programs need to:
« Filter specific kinds of words (e.g., nouns, verbs, stopwords)
« Handle multiple conditions (e.g., if token is alphabetic, not numeric)

« Control flow (e.g., skip punctuation, lowercase all words, etc.)

So this part ensures you can control text analysis intelligently.

Automatic Natural Language Understanding

This is where we shift from counting and manipulating words — to understanding
meaning.

It introduces the goal of NLP — enabling computers to understand and respond to
human language automatically.

What It Means
Automatic Natural Language Understanding (NLU) is the ability of a computer to:
« Interpret human language (text or speech)

« Extract meaning (semantics, intent, entities)
» Generate responses intelligently

Subfields Involved

Area Description Example

Tokenization Breaking text into “I love NLP” — [“T”, “love”,
words/sentences “NLP”]

POS Tagging Identifying part of speech  “love” — verb

Named Entity Recognition Identifying names, places, “Elon Musk” — PERSON

(NER) dates

Parsing Analyzing sentence structure Grammar trees
Semantic Analysis Understanding meaning of  “bank” — riverbank or



Area Description Example

text financial bank
Sentiment Analysis Detecting opinion or emotion “good” — positive
Coreference Resolution Linking pronouns to nouns  “He” — “John”
Machine Translation Converting languages English — Hindi

Example Using NLTK

nltk

nltk pos tag, word tokenize, ne chunk

sentence =

tokens = word tokenize(sentence)
tags = pos_tag(tokens)

entities = ne chunk(tags)

print( , tokens)

print( , tags)

print( , entities)




OUTPUT

Tokens: [

POS Tags: [(

Named Entities:
(s
(PERSON Elon/NNP)

(PERSON Musk/NNP)

founded/VvBD

(ORGANIZATION SpaceX/NNP)
JIN

2082/CD

g2

Why Important?
Because NLU is what enables:
» Chatbots (like Siri, Alexa, ChatGPT [1)
« Sentiment analysis
« Search engines
« Translation systems
« Question-answering bots
« Voice assistants

It’s the “intelligent” side of NLP.

Accessing Text Corpora

What Is a Corpus?

A corpus (plural: corpora) is a large collection of text — like books, news articles,
tweets, or speech transcripts — used for language research and NLP model training.

In NLP, corpora are used to:



« Analyze language structure
« Train models (for tagging, translation, sentiment, etc.)
« Study word usage and frequency

Accessing Corpora in NLTK

NLTK provides many built-in corpora.

nltk.corpus gutenberg, brown, reuters

print(gutenberg.fileids())
print(brown.categories())

print(reuters.categories())

Example: Reading Text

nltk.corpus gutenberg

words = gutenberg.words(
print( » len(words))

print( » words[:20])

OUTPUT

Total words:

First words:




Corpus Operations

Operation Description Example

gutenberg.words ('austen-

.words () Returns list of all words ,
emma.txt"')

Returns list of sentences (each

. brown.sents (categories="news')
sentence = list of words) J

.sents ()

gutenberg.raw ('austen-

.raw () Returns entire text as one string emma. txt )

Why Important?
Accessing corpora lets you:
o Work with real-world text

« Compute statistics (word count, frequency, diversity)
« Train and evaluate models on large text data

What is a Conditional Frequency Distribution?

A Conditional Frequency Distribution (CFD) in NLP is used to find how often
something happens under certain conditions.

Think of it like:

“How many times does a word appear in a specific category (condition)?”

Example to Understand
Imagine you have two categories (conditions):

e News
« Romance

Each category has words (data).



Category Words

"war", "president”, "election",

News "war", "budget"

"love", "kiss", "love", "heart",

Romance "beautiful”

Now you want to know:

« How many times the word “love” appears in romance?
e How many times the word “war” appears in news?

Example in Python (Using NLTK)

Conditional FreqDist

cfd = ConditionalFreqDist(data)

print(cfd[ ].items())
print(cfd[ ].items())

» cfd[ 1L D
, cofd[



OUTPUT

Why Useful?
It helps analyze word usage patterns:

« Compare words across genres or time periods
« Understand context-based frequency
« Build features for text classification

Lexical Resources

What Are Lexical Resources?
These are structured databases of words — collections that tell you:

« Meanings

« Synonyms / antonyms
« Parts of speech

« Example usage

Examples include:

o WordNet (most popular in NLP)
« Stopwords lists

« Pronunciation dictionaries

o Sentiment lexicons



Example: Stopwords

Stopwords are common words like is, the, a, in — usually removed before analysis.

nltk.corpus stopwords

print(stopwords.words y:10])

OUTPUT

[, 'me’, 'my*, 'myself’, ‘we', "our’, ‘ours', ‘ourselves', 'you’, ""'you're"]
Why Important?
Lexical resources give semantic and linguistic structure — essential for:

Lemmatization (getting word roots)
Synonym/antonym detection
Sentiment or tone detection
Building knowledge-based systems

WordNet

What Is WordNet?

WordNet is a large lexical database of English.
It groups English words into synsets (sets of synonyms) and records relationships
between them — like:

Synonyms

Antonyms
Hypernyms (is-a)
Hyponyms (sub-type)
Meronyms (part-of)



Why WordNet Is Important
WordNet is crucial in NLP for:

« Semantic analysis (understanding meaning)
« Text classification using word relations

« Word sense disambiguation

« Question answering and summarization

« Knowledge graphs and ontology-based Al



UNIT -2

Processing Raw Text — Accessing Text from the Web and
from Disk

This topic teaches how to get raw text data (like articles, books, or tweets) into Python
for NLP tasks.

Before we analyze or clean text, we must access (load) it — either from the internet
(web) or from our computer (disk)

Accessing Text from the Web

In NLP, we often need text from online sources — like web pages, blogs, or Wikipedia
articles.

Common Ways to Access Text from the Web

(a) Using urllib (Built-in Python Library)

urllib lets us open URLs and read the text (HTML content) of web pages.
request

url =

response = request.urlopen(url)

raw = response.read().decode(

print(type(raw))
print(len(raw))
print(raw[:500])

Explanation:

e urlopen () — opens the web page
e read() — reads the content
o decode ('utfg8') — converts it into a readable string



(b) Using requests library (simpler & modern)

requests

url =
response = requests.get(url)

text = response.text

print(text|: 1)

requests is easier and cleaner than urllib.

(c) Removing HTML Tags (if web page has HTML)

Web pages often contain tags like <p> or <div>.
We can remove them using BeautifulSoup (a web-scraping library).

bs4 BeautifulSoup

requests

url =
html = requests.get(url).text

soup = BeautiftulSoup(html,
text = soup.get text()
print(text[:560])

Now you have pure text (no HTML)



Accessing Text from Disk (Local Files)

If the text is already stored on your computer (like . txt, .csv, .docx), you can read it
easily in Python.

(a) Reading a Text File

file = open( , encoding=

text = file.read()
file.close()

print(text[:200])
r'" means read mode.
Always close the file after reading.
(b) Using with (Recommended)

open( » encoding=
text = f.read()

print(text|[:200])

Automatically closes file — safer and cleaner.

(c) Reading Multiple Files

If you have many text files in a folder:



folder path =

file name os.listdir(folder path):
file name.endswith( E
open(os.path.join(folder path, file name), , encoding=
text = f.read()
print( » Length: {len(text)}")

Processing the Text
After loading text (from web or disk), you usually want to:

1. Tokenize — split text into words or sentences
2. Normalize — lowercase, remove punctuation, etc.

Example:

nltk

nltk word tokenize

tokens = word tokenize(text)
print(tokens[:20])

Strings — Text Processing at the Lowest Level

In NLP, everything starts with text, and in Python, text = string.
Before we use advanced tools (like NLTK tokenizers), we should understand how
strings work, because they are the lowest-level representation of text in Python.



What is a String?

A string is a sequence of characters — letters, numbers, symbols, or spaces — enclosed
in quotes.

Accessing Characters in a String

You can access any character by its index number (just like list indexing).
Indexing starts from O.

text =

print{text[a])
print(text[2])
print(text[-1])

String Slicing

You can extract parts of strings using slice notation [start:end].

text =
print(text[e:4])

print(text[2:])
print(text[:5])




String Operations

Python provides many useful string operations for text processing:

Operation
_|_

*

len ()

in

Description Example

Concatenate strings "Hello " + "World" — "Hello World"
Repeat string "Hil!" * 3 — "Hi!Hi!Hi!"

Find length len ("Python") — 6

Check substring "Lang" in "Language" — True

String Methods for Text Cleaning

Method

lower ()

upper ()

title ()
strip()

replace()

split ()

join()

Function Example Output
Convert to lowercase "PYTHON". lower () python
Convert to uppercase "python".upper () PYTHON
Capitalize each word "hello world".title() Hello World
Remove spaces " text ".strip() text

"AI is cool".replace("cool",

Replace substring mEun™) AI is fun
Split string into . . " . ['AT', 'with',
words AT with Python".split () 'Python']

"ow_Join(['AI', 'with',

Join listintostring 7 00y,

Checking String Content

Function

isalpha ()
isdigit ()
isalnum()

isspace ()

Purpose Example

Checks if all characters are letters "Hello".isalpha ()
Checks if all characters are digits "123".isdigit ()
Checks if alphanumeric "AT123".isalnum()

Checks if only spaces " M. isspace()

AT with Python

Output
True
True
True

True



Example: Basic Text Preprocessing Using Strings

sentence =

clean = sentence.strip().lower().replace(”,", "").replace("!", "")

words = clean.split()

print(words)

OUTPUT

['natural’, 'language’, "processing’, ‘or', 'nlp’, "is', "amazing']

Text Processing with Unicode

When working with Natural Language Processing (NLP), we often deal with many
languages, symbols, and special characters.

To process all of them correctly, Python uses a system called Unicode — a universal way
to represent text from every language.

What is Unicode?

« Unicode is a standard that assigns a unique number (called a code point) to every
character in every language.

It solves the problem of earlier encodings (like ASCII) that could only handle
English letters.

Character Unicode Code Point Description

A U+0041 English Capital A

a U+0061 English Small a

3 U+0905 Hindi Letter A

Hh U+4E2D Chinese Character

0 U+1F600 Emoji: Grinning Face



Every symbol has its own unique code — making it possible to mix
languages safely in the same file.

Encoding and Decoding

Encoding = converting text — bytes
Decoding = converting bytes — text

This is important when reading/writing files or transferring text across the web.

text =

encoded = text.encode(

print(encoded)

decoded = encoded.decode(
print(decoded)

OUTPUT

b
T

'utf-8' is the most common encoding — supports all languages.

Regular Expressions for Detecting Word Patterns

1. Introduction

« Regular expressions (also called regex) are powerful tools used to find, match,
and manipulate text patterns in strings.



o In NLP, they are often used for tokenization, pattern matching, cleaning text,
and information extraction (like finding emails, phone numbers, dates, etc.).

Example:
If you want to find all words starting with a capital letter in a paragraph, you can do it
easily using a regular expression

Importing Regex Module in Python

Python provides the re module to work with regular expressions.

Basic Regex Functions

Function Description

re.match () Checks if the pattern matches at the beginning of the string
re.search () Searches for the first occurrence of the pattern
re.findall () Returns all occurrences of the pattern

re.sub () Replaces text that matches the pattern

re.split() Splits a string using the pattern as delimiter

Common Regex Symbols

Symbol  Meaning Example Matches
Any character except newline h.t “hat”, “hit”, “hot”
” Start of string “Hello Matches if string starts with "Hello"
$ End of string worlds$ Matches if string ends with "world"
\d Any digit (0-9) \d+ "123", "56"
\w Any word character (a—z, A-Z, 0-9, ) \w+ "hello”, "Python3"
\s Any whitespace \s+ space, tab, newline
* 0 or more repetitions ab* "a", "ab", "abb", "abbb"
+ 1 or more repetitions ab+ "ab", "abb"

? 0 or 1 occurrence colou?r "color", "colour"



Symbol  Meaning Example Matches
[] Set of characters [aeiou] matches vowels
{m,n} Between m and n repetitions \d{2,4} "12", "2024"

OR condition “cat

Example 1: Find All Words Starting with Capital Letter

text =

words = re.findall(

print(words)

text =
emails = re.findall(

print(emails)




Useful Applications of Regular Expressions
(a) Tokenization

Splitting sentences or paragraphs into words or tokens.

(b) Removing Unwanted Characters

Cleaning text by removing punctuation, special characters, or numbers.
(c) Extracting Email Addresses

Finding and collecting all emails from a large text (useful for scraping or contact
extraction).

(d) Extracting Phone Numbers

Finding phone numbers in documents or web pages.

(e) Extracting Dates

Detecting date formats like 12/10/2025 or 2025-10-12.

(f) Detecting Capitalized Words (e.g., Names, Locations)

Useful in Named Entity Recognition (NER) or for extracting proper nouns.
(g) Removing Extra Spaces

Cleaning messy text with multiple spaces or tabs.

(h) Extracting Hashtags or Mentions (for Social Media Data)

Very useful in NLP when analyzing tweets or Instagram captions.



Normalizing Text

1. Introduction

In Natural Language Processing (NLP), text normalization means converting text into a
standard or uniform format so that it can be easily processed by algorithms.

Human language is very inconsistent — we write the same thing in different ways:

e “U” and “you” mean the same.

29 €6

e “Running”, “runs”, and “ran” are forms of “run”.
e “I’m” and “I am” are equivalent.

To make text consistent, we perform normalization before feeding it to any NLP model.

Why Normalization is Important

Because:

« It reduces variations in words that mean the same thing.
« Itimproves accuracy of NLP models.
« It makes text clean, consistent, and comparable.

Example:

Without normalization:
["Running", "runs", "Ran"]

After normalization:
["run", "run", "run"]

Common Text Normalization Techniques

(a) Lowercasing

Convert all characters to lowercase to avoid duplication.

text =

text = text.lower()
print(text)




OUTPUT

natural language processing

(b) Removing Punctuation and Special Characters

Punctuation marks are usually not meaningful for NLP tasks.

text =
clean text = re.sub(
print(clean text)

OUTPUT

World Its Tauqueer

(c) Removing Stopwords

99 €69 ¢

Stopwords are common words like “is”, “the”, “a”, “an”, etc., which do not add meaning.

nltk.corpus stopwords
nltk.tokenize word tokenize
nltk
nltk.download(
nltk.download(

text =

words = word tokenize(text)

filtered = [word word words word. lower () stopwords .words(

print(filtered)

OUTPUT



(d) Stemming
Stemming reduces words to their root form (not necessarily a real word).

Example:

99 ¢

“Playing”, “played”, “plays” — “play”
(e) Lemmatization

Lemmatization also reduces words to their base form (lemma), but it uses vocabulary
and grammar for more accuracy.

Example:

“Better” — “good” (correct lemma)
‘GWaSB’ N “be’B

(f) Expanding Contractions

Converting shortened words to their full form:

‘GI,mB’ — “I am”
° “dOl’l,t” - ‘Gdo nOt”

Combined Example

Let’s apply multiple normalization steps together



re
nltk.stem Porterstemmer

nltk.corpus stopwords

nltk.tokenize word tokenize
nltk
nltk.download(
nltk.download(

text =

text = text.lower()

text = re.sub( ., , text)

words = word tokenize(text)

words = [w w words stopwords.words(
ps = PorterStemmer()

words = [ps.stem(w)

print({words)

OUTPUT

Regular Expressions for Tokenizing Text

1. Introduction

Tokenization is the process of splitting text into smaller units — usually words,
sentences, or phrases.

Regular expressions (regex) help define patterns that tell the computer where to split
the text.

In simple terms:

Tokenization = breaking text into tokens (words or sentences) using rules or patterns.

Why Use Regular Expressions for Tokenization?



Regular expressions give more control and flexibility compared to simple splitting (like
split () in Python).

e split () justdivides on spaces.
« But regex can handle punctuation, numbers, contractions, etc.

« It’s especially useful for complex text like social media data, reviews, or web
content.

Simple Word Tokenization Using Regex

Let’s split a sentence into words using a simple regex pattern.

text =
tokens = re.findall(

print(tokens)

OUTPUT

\b\w+\b Means:

e \b — word boundary
e \w+ — one or more word characters (letters, digits, underscore)



Segmentation in NLP

1. Introduction

In Natural Language Processing (NLP), segmentation refers to the process of dividing
text into meaningful units, like:

« Sentences — Sentence Segmentation (or Sentence Boundary Detection)
« Words — Word Segmentation

Segmentation is an important preprocessing step because many NLP tasks (like

tokenization, parsing, and machine translation) require text to be in smaller, meaningful
units.

Types of Segmentation
(a) Sentence Segmentation
Dividing text into sentences.
Challenges:
o Punctuation ambiguity (e.g., br. sSmith is here. — Dr. is notthe end of a
sentence)

« Abbreviations, decimal points, URLs

Example using regex:

text =

sentences = re.split(

print(sentences)




OUTPUT

Explanation:

e (?<=[.!2])\s+ — split at spaces after a period, exclamation, or question mark.

Example using NLTK:

nltk.tokenize sent tokenize
nltk
nltk.download(

text =

sentences = sent tokenize(text)

print(sentences)

OUTPUT

(b) Word Segmentation

Dividing a sentence into words (or tokens).

Example using regex:



re

sentence =

words = re.findall( , sentence)

print(words)

OUTPUT

Example using NLTK:

nltk.tokenize word tokenize
words = word tokenize(sentence)

print(words)

OUTPUT

Notice that word tokenize keeps punctuation as separate tokens.

Special Cases in Segmentation

1. Languages without spaces

o Example: Chinese, Japanese

o Words are not separated by spaces, so word segmentation requires

dictionary-based or statistical methods.

2. URLs, Emails, Hashtags, Emojis

o These require custom tokenization rules to avoid splitting in the middle.
3. Abbreviations

o Example: u.s.a. — shouldn’t split at every period.



Why Segmentation is Important
o It allows accurate tokenization

« It’s crucial for POS tagging, parsing, and translation
« Helps in information retrieval and text analytics

Formatting: From L.ists to Strings in NLP

1. Introduction
In NLP, after tokenizing text, we often have lists of words or tokens.

Sometimes, we need to convert these lists back into readable text for output, display,
or further processing. This process is called formatting lists into strings.

Why It’s Useful
« Joining tokenized words back into sentences.
» Preparing text for storage, display, or machine learning models.

« Combining outputs from preprocessing steps like tokenization, stemming, or
lemmatization.

Converting Lists to Strings Using join ()

The most common way in Python is using the join () method.

words = [ s

sentence = .join(words)

print(sentence)




OUTPUT

Natural Language Processing

' '.join (words) joins the words with a space between them.

Joining with Other Separators

You can use commas, hyphens, or other characters instead of spaces.

words = [ ’
print( .Jjoin(words))

print( .join(words))

OUTPUT

Handling Punctuation Properly

Sometimes tokenization separates punctuation from words.
We may want to join them without extra spaces.

tokens = |

sentence = " '.join([tokens[2]] + [ + t t.isalnum() t tokens|[1:

print(sentence)

OUTPUT

Hello, world!




From Nested Lists to Strings

Sometimes, text may be in nested lists, like paragraphs of tokenized sentences.

paragraph = [[ I [

sentences = [ '.Jjoin(sentence) sentence paragraph]

text = .join(sentences) +
print(text)

OUTPUT

Processing. fun.

Categorizing and Tagging Words

In Natural Language Processing (NLP), categorizing and tagging words means
assigning a grammatical or semantic label to each word in a sentence.

This helps the computer understand the role each word plays — whether it’s a noun,
verb, adjective, etc.

This process is called Part-of-Speech (POS) Tagging.
Why Is Tagging Important?
Tagging is used in many NLP applications such as:

o Text classification

« Named Entity Recognition (NER)

o Machine translation

« Speech recognition

o Question answering

It allows the computer to “understand” how words are functioning in a sentence.



Example:

Sentence: “The cat sat on the mat.”
Tags:

e The — Determiner (DT)
e cat — Noun (NN)

e sat — Verb (VBD)

e on — Preposition (IN)

e the — Determiner (DT)
o mat — Noun (NN)

What Is a Tagger?

o A Tagger is an NLP tool or algorithm that automatically assigns tags to words
based on their context and grammar.

» It takes a sentence as input and returns a list of (word, tag) pairs as output.

Types of Taggers
(a) Rule-Based Taggers

« Use handwritten grammatical rules to assign tags.
o Example: If a word ends with “-ed,” it is likely a past tense verb (VBD).
o Example tool: ENGCG (English Constraint Grammar)

(b) Stochastic Taggers (Statistical Taggers)

« Use probability and statistics based on a trained corpus.
« Example methods:

o Hidden Markov Model (HMM) Tagger

o N-gram Tagger

These taggers predict the most likely tag based on the previous tags and word
frequencies.



(c) Transformation-Based Taggers
« Also known as Brill Tagger.

« Starts with simple tagging (e.g., most frequent tag) and learns transformation
rules to improve accuracy based on errors.

(d) Neural Network Taggers
o Use Deep Learning models (e.g., BILSTM, CRF, Transformers).

« These capture contextual meaning of words more accurately.
o Example: BERT, spaCy, or NLTK’s neural taggers.

Example Using NLTK (Python)

Here’s how tagging works programmatically

nltk

nltk word tokenize

nltk.download( )
nltk.download(

text =
tokens = word tokenize(text)

tags = nltk.pos tag(tokens)

print(tags)

OUTPUT




Each pair (word, tag) shows the category assigned by the tagger.

Common POS Tags (Penn Treebank Tagset)

Tag Meaning Example
NN Noun (singular) book
NNS Noun (plural)  books
VB Verb (base form) eat

VBD Verb (past tense) ate

JJ Adjective beautiful
RB Adverb quickly
PRP Pronoun he, she
IN  Preposition on, at
DT Determiner the, a

Tagged Corpora (Definition)

A Tagged Corpus (plural: Corpora) is a collection of text where each word is
annotated (tagged) with its part of speech (POS) or other linguistic information.

In simple words:
A tagged corpus = Text + Tags

Example
Word Tag
The DT
cat NN
sat VBD
on IN
the DT

mat NN



Purpose of Tagged Corpora

Tagged corpora are used to:
1. Train POS Taggers — taggers learn patterns of how words and tags co-occur.
2. Evaluate NLP models — used as a benchmark to check tagging accuracy.

3. Linguistic analysis — to study grammar, syntax, and word usage in real
language.

Types of Tagged Corpora

1. Part-of-Speech (POS) Tagged Corpora
Each word is tagged with its grammatical category.
Example (NLTK Brown Corpus):

"The/DT cat/NN sat/\VVBD on/IN the/DT mat/NN ./."

2. Morphologically Tagged Corpora

Each word is tagged with morphological features, such as:
« Tense (past/present)
o Number (singular/plural)
« Gender (masculine/feminine)

Example:

“sat” — Verb, Past Tense
“cats” — Noun, Plural



3. Syntactically Tagged Corpora (Parsed Corpora)

« Contain phrase structure or dependency structure information.
« Used for parsing and grammar learning.

Example (Parse tree):

(s
(NP (DT The) (NN cat))

(vP (VBD sat)
(PP (IN on)
(NP (DT the) (NN mat)))))

4. Semantically Tagged Corpora
» Words are tagged with semantic roles or meanings (like “Agent”, “Action”,
“Object”).
« Used in Semantic Role Labeling (SRL) and information extraction.

Example:

“Ram ate an apple.”
— Ram (Agent), ate (Action), apple (Object)

Examples of Famous Tagged Corpora

Corpus Name Description Language
First large-scale tagged corpus (1

Brown Corpus million words) English
Penn Treebank Esct)ai + syntactic annotations, widely English
Wall Street Journal (WSJ) Subset of Penn Treebank English

Corpus
TIMIT Tagged with phonetic and speech data English



Corpus Name Description Language

Indian Languages Corpora Multilingual corpus (Hindi, Tamil, Indian
Initiative (ILCI) etc.) Languages

Cross-linguistic tagged corpus with

syntactic & POS info Multiple

Universal Dependencies (UD)

Tagged Corporain NLTK

NLTK (Natural Language Toolkit) provides many tagged corpora you can use for
training or testing taggers.

Example:

nltk
nltk.download(
nltk.corpus

tagged sentences = brown.tagged sents()

print(tagged sentences[©])

OUTPUT

[(The','AT"), (Fulton', 'NP-TL"), (County', 'NN-TL"), (Grand', 'J3-TL"), (Jury’,
'NN-TL"), (‘said", "VBD'), ...]

How Tagged Corpora Are Used

Step Purpose
1. Collect text data Large samples of written/spoken language
2. Annotate words  Linguists or algorithms add tags
3. Train taggers Machine Learning models learn from these patterns
4. Test accuracy Compare predicted tags with tagged corpus
5. Apply to real data Use taggers on untagged sentences



Mapping Words to Properties Using Python Dictionaries

This concept connects linguistic data (words) with their associated features or
properties — and Python dictionaries are the perfect structure for this.

1. What Does “Mapping Words to Properties” Mean?

In Natural Language Processing (NLP), we often need to store information about
words — such as:

Their Part of Speech (POS)

Lemma (base form)

Meaning or Synonym

Frequency

Word Category (noun, verb, adjective)

Semantic information (like sentiment, domain, etc.)

To do this efficiently, we map each word to its properties using a dictionary, where:

Key = Word
Value = Property/Properties

Example:

word_properties = {

: {

2 o

h

print(word properties| 11

Output:
Verb



Why Use Dictionaries in NLP?

Python dictionaries provide:
» Fast lookups — o (1) access time

« Structured storage for linguistic attributes
o Flexibility — can store multiple features per word

Real-World Uses of Word-to-Property Mapping

Application Description
POS Tagging Store which tag each word gets (NN, VB, etc.)
Lemmatization Map inflected forms — base form (e.g., “ran” — “run”

Store different meanings (e.g., “bank” = river side or

Word Sense Disambiguation financial institution)

Sentiment Analysis Map words to polarity (positive/negative)
?II\?IrEan;j Entity Recognition Map words to entity type (Person, Location, Organization)

Example: Lemmatization Mapping

lemmatization dict = {

»

» lemmatization dict[word])




Output

Base form: child

Automatic Tagging

What Is Automatic Tagging?

In Natural Language Processing (NLP), Automatic Tagging means assigning tags
(like parts of speech, named entities, etc.) to words automatically using algorithms
or trained models — without manual human labeling.

It’s the process of letting the computer decide the grammatical or semantic role of
each word based on rules, statistics, or machine learning.

Example
Input Sentence:
“The cat sat on the mat.”

Automatic Tagger Output:

Here, the tagger automatically labeled each word with its Part of Speech
(POS) tag.



How Automatic Tagging Works
Automatic tagging systems use different methods depending on complexity:

Step-by-step process:

1. Input Sentence — “She is playing football.”
2. Tokenization — ["She", "is", "playing", "football", "."]
3. Model checks each word:
o Looks up word in a dictionary or corpus.
o Checks surrounding words (context).
o Predicts the most likely tag.
4, Output — [('She', 'PRP'), ('is', 'VBZ'), ('playing', 'VBG'),
('football', 'NN'), ('.', '.")]

Approaches to Automatic Tagging

There are three major approaches to automatic tagging:

A. Rule-Based Tagging

« Uses handcrafted grammatical rules and lexicons.
o Example rules:
o If aword ends with “-ed”, tag it as past tense verb (VBD).
o Ifaword comes after a determiner (DT), tag it as noun (NN).

Example:

If (word.endswith(
tag =

(previous ta

tag =




Pros: Accurate for small, grammatically clean datasets.
Cons: Hard to scale; requires expert rules.

B. Statistical Tagging (Probabilistic Tagging)

Uses statistics and probabilities learned from a tagged corpus (like Brown or Penn
Treebank).

o Most common: Hidden Markov Model (HMM) or N-Gram Taggers.
» Each word is tagged based on the probability of a tag given the word and its
context.

Formula (simplified):

P(tagword) P(word|tag) x P(tag)

P(word)

Example:
If in training data:

o “sat” appears as a verb (VBD) 95% of the time,
then the tagger will likely assign “sat — VBD”.

Pros: Learns from real data.
Cons: Needs a large tagged corpus.

C. Machine Learning / Neural Network Tagging
Modern NLP uses deep learning models like:

o BILSTM (Bidirectional LSTM)
o CREF (Conditional Random Fields)
o Transformer models (BERT, ROBERTR, etc.)

These models learn contextual patterns from millions of examples — so they can
understand that:



“book” in “I will book a ticket” — verb
“book” in “I read a book” — noun

Pros: Very accurate, handles ambiguity
Cons: Needs computational resources and training data.

Example Using NLTK (Python)

nltk
nltk word tokenize
nltk.download( )
nltk.download(

sentence =
tokens = word tokenize(sentence)

tags = nltk.pos tag(tokens)

print(tags)

This is Automatic Tagging in action — done using NLTK’s pre-trained
tagger (Averaged Perceptron Tagger).



Automatic Tagger Types in NLTK

Tagger Description
DefaultTagger Assigns a single default tag to all words (e.g., NN)
RegexTagger Uses regular expressions for rule-based tagging

i Assigns tag based on most common tag of the word (from
UnigramTagger

corpus)

Bigram/TrigramTagger Considers previous one/two tags for context
BrillTagger Transformation-based learner (hybrid of rule & statistics)

Advantages of Automatic Tagging

1 Saves time (vs manual tagging)

'] Scalable to millions of words

1 Improves consistency

1 Can adapt to new languages withtraining
1 Used in most realworld NLP systems

Challenges / Limitations
1 Ambiguity— words like “bank” (river bank or financial bank)

1 Unknown words— words not seen in training data
1 Context sensitivity— “light rain” (adjective) vs “light the lamp” (verb)

N-Gram Tagging

What Is N-Gram Tagging?

N-Gram Tagging is a statistical approach to automatic tagging in NLP.
It assigns Part-of-Speech (POS) tags to words based on the tag(s) of the previous
(N—-1) word(s) in a sentence.



In simple terms:

An N-Gram Tagger uses context — the tags of nearby words — to predict the correct
tag for the current word.

It’s based on the idea that the tag of a word depends not only on the word itself but also
on the tags of surrounding words.

What Is an N-Gram?

An N-Gram is a sequence of N items (words or tags) that appear together.

Called
N Example As
1 “cat” Unigram
2 ‘“the cat” Bigram
3 th ¢ black Trigram
cat

In tagging, we use tag sequences instead of word sequences:
o Unigram Tagger — Uses only the current word

o Bigram Tagger — Uses previous word’s tag
o Trigram Tagger — Uses previous two tags

How N-Gram Tagging Works

Step-by-step process:
Let’s take a simple sentence:
“The cat sat on the mat”
1. Training Phase
o The tagger is trained on a tagged corpus (e.g., Brown or Penn Treebank).

o It learns how likely a certain tag sequence occurs.
o For example:



= P(NN | DT) = Probability of a Noun (NN) coming after a
Determiner (DT).
= P(VBD | NN) = Probability of a Past Tense Verb after a Noun.
2. Tagging Phase
o [For each new word, the model selects the tag with the highest probability,
given the previous (N—1) tags.

Example of Bigram Tagging:

Word Possible Tags Previous Tag Selected Tag

The DT — DT

cat NN, VB DT NN (since NN follows DT often)
sat NN, VBD NN VBD (verb likely after noun)

on IN VBD IN

the DT IN DT

mat NN DT NN

Final Output:

[('The', 'DT'), ('cat', 'NN'), ('sat', 'VBD'), ('on', 'IN'), ('the',
'DT'), ('mat', 'NN')]

N-Gram Tagging in NLTK

NLTK provides built-in taggers for unigram, bigram, and trigram tagging.



Example Code:

nltk
nltk.corpus
nltk.download(
nltk.download(

train data = brown.tagged sents(tagset=

test data = brown.tagged sents(tagset=

unigram tagger = nltk.UnigramTagger(train data)
bigram tagger = nltk.BigramTagger(train_data, backoff=unigram tagger)

print(bigram tagger.tag([

OUTPUT

Comparison of N-Gram Taggers

Type Uses Pros Cons
Unigram Tagger Only current word Fast, simple  Ignores context
Bigram Tagger Current + previous tag Context-aware Fails with unseen pairs

Trigram Tagger Current + previous two tags More context Needs lots of data



Example Comparison

Sentence: “Time flies like an arrow’

Word Unigram Bigram Trigram

Time NN NN NN
flies NNS VBZ VBZ
like IN IN IN
an DT DT DT

arrow NN NN NN

Here, the Bigram/Trigram taggers help correctly identify “flies” as a verb
(VBZ), not a noun (NNS), because of context.

Applications of N-Gram Tagging

« Part-of-Speech Tagging
« Named Entity Recognition (NER)
« Speech Recognition

o Spell Correction

« Text Prediction and Autocomplete

Transformation-Based Tagging (TBL) — also known as
Brill Tagging

Transformation-Based Tagging is a rule-based approach to Part-of-Speech (POS)
tagging in Natural Language Processing (NLP).

It was introduced by Eric Brill (1995) and is one of the most famous hybrid methods
because it combines both statistical and rule-based approaches.



Idea Behind TBL

« Instead of directly assigning the best possible tag using probabilities (like HMMs
or n-grams),
TBL starts with an initial (baseline) tagging and gradually improves it by
learning a sequence of transformation rules.

« These rules correct errors in the initial tagging step-by-step.

How Transformation-Based Tagging Works

1. Initialization (Baseline Tagging)
o Start by giving each word its most likely tag (for example, using unigram
statistics — the most frequent tag for each word in the training corpus).
o Unknown words may get a default tag like ‘NN’ (noun).

Example:

Input sentence: The cat sat on the mat.

Initial tags: DT NN VBD IN DT NN

2. Learning Transformation Rules

« The system compares the current tags with the correct tags (from a tagged
corpus).

« ltidentifies errors and learns rules that can correct them.

« Each rule has the form:
“Change tag A to tag B when condition C is true.”

Example Rules:

« Change NN — VB if the word is preceded by ‘to’
o Change VBD — VBN if the word ends with ¢-ed’

3. Applying the Rules

« The learned transformation rules are applied sequentially to improve tagging
accuracy.



« Eachrule is applied only if it reduces the total number of errors.

4. Final Output

« After applying all rules, the output tags are much more accurate than the initial
ones.

Example

Suppose we have:

sentence: He can fish.

Initial tagging (unigram tagger might produce):

swift

fish/

But “fish” here is a verb, not a noun.

TBL might learn a rule:
arduino

Change NN » VB the previous 1 (modal verb)

After applying this rule:

swift




Advantages

« Combines accuracy of statistical models and interpretability of rule-based
systems.

« Rules are human-readable, making debugging and analysis easier.

« Performs well even with moderate-sized corpora.

Disadvantages
« Training is slow (many rule evaluations).
« Sequential dependency — later rules depend on earlier ones.

« May not perform as well as deep learning models on very large datasets.

In NLTK (Python Example)

nltk
nltk.tbl demo brill demo

brill demo.demo()

This runs a demonstration showing how transformation rules are learned and applied in
NLTK.

How to Determine the Category of a Word (Part-of-
Speech Tagging in NLP)

In Natural Language Processing (NLP), determining the category of a word means
identifying its part of speech (POS) — for example, whether a word is a noun, verb,
adjective, adverb, etc.

This process is known as POS tagging or word categorization.



What is Word Category?

Each word in a sentence belongs to a syntactic category (also called a grammatical
category or part of speech).
Examples include:

o Noun (NN) — person, place, thing — dog, book, India

« Verb (VB) — action or state — run, eat, is

» Adjective (JJ) — describes a noun — happy, blue, tall

o Adverb (RB) — modifies verbs or adjectives — quickly, very
« Preposition (IN) — shows relationship — in, on, under

o Determiner (DT) — specifies a noun — the, a, some

o Pronoun (PRP) — replaces a noun — he, she, it

Methods to Determine the Category of a Word

There are four main methods used in NLP to determine a word’s category:

1.Lexical Lookup (Dictionary-Based Tagging)

Each word is looked up in a lexicon (dictionary) that lists words and their possible
categories.

Example:

Word Possible Categories
book NN (noun), VB (verb)
play VB (verb), NN (noun)

Limitation:

Many words are ambiguous — they can belong to multiple categories depending on
context (e.g., “book a ticket” vs “read a book”).

2.Rule-Based Tagging

This method applies grammatical rules and context to assign the correct tag.



Example Rules:

« If aword ends with -ly, tag it as an adverb (RB) — quickly, slowly
« If aword comes before a noun, tag it as an adjective (JJ) — beautiful flower
« If aword comes after a determiner (the, a), tag it as a noun (NN) — the cat

Example:

man slowly/

3.Statistical (Probabilistic) Tagging

Uses probability models trained on large, manually tagged corpora to predict the most
likely tag for each word in context.

Examples:

« Unigram Tagger: assigns the most frequent tag for a word.

o Bigram/ Trigram Tagger: uses the tag(s) of the previous one or two words to
predict the current tag.

« Hidden Markov Model (HMM) Tagger: uses both emission and transition
probabilities.

« Neural Taggers (e.g., BILSTM, BERT): use deep learning to capture complex
word and sentence patterns.

Example:
"I saw her duck."
« Unigram tagger: may tag duck as NN (noun)

« Context-aware tagger: may tag duck as VB (verb) depending on context (“her
duck to avoid something”).



4.Combined (Hybrid) Tagging
Modern NLP systems (like NLTK’s pos_tag () or spaCy) combine:

« Lexical dictionaries,

« Statistical models,

o And sometimes neural networks
to achieve high accuracy.

Example in Python (Using NLTK)

pos_tag, word tokenize

sentence =

tokens = word tokenize(sentence)

tags = pos tag(tokens)

print(tags)

OUTPUT




Summary Table

Method Description Example

Lexical Lookup Dictionary lookup book — NN/VB
Rule-Based Uses grammar rules word ending with -/y — RB
Statistical Uses probabilities from data HMM, n-gram models

Neural / Hybrid Uses deep learning + context BERT, spaCy, etc.

UNIT -3

What is Text Classification?

Text classification is the process of assigning predefined categories or labels to text
documents.
Examples:

o Spam detection — spam / not spam

« Sentiment analysis — positive / negative / neutral
o News categorization — sports / politics / tech / business

Supervised Classification

Concept:

In supervised learning, the model is trained using a labeled dataset, i.e., data where
each text is already tagged with its correct category.

Example training data:

Text Label
“Great movie, I loved it” Positive
“Worst film ever” Negative



The algorithm learns patterns from these examples to classify new unseen text.

Steps in Supervised Text Classification:

1. Data Collection: Gather text samples and their labels.
2. Preprocessing:
o Tokenization
o Lowercasing
o Removing stopwords
o Stemming/Lemmatization
3. Feature Extraction:
Convert text into numerical form (vectors) using techniques like:
o Bag of Words (BoW)
o TF-IDF (Term Frequency-Inverse Document Frequency)
o Word Embeddings (Word2Vec, GloVe)
4. Model Training: Train a classifier (e.g., Naive Bayes, Logistic Regression,
SVM).
Prediction: Classify new, unseen texts.
6. Evaluation: Measure accuracy and performance.

o

Evaluation of Classifiers

To test how well the model performs, we use evaluation metrics on test data (data not
seen during training).

Confusion Matrix

Predicted Positive Predicted Negative
Actual Positive True Positive (TP) False Negative (FN)
Actual Negative False Positive (FP) True Negative (TN)



Metrics:

« Accuracy =(TP+TN)/ (TP + TN + FP + FN)

— Overall correctness.
« Precision=TP /(TP + FP)

— Out of predicted positives, how many were correct.
. Recall=TP /(TP + FN)

— Out of actual positives, how many were identified correctly.
« F1-Score =2 x (Precision x Recall) / (Precision + Recall)
— Harmonic mean of precision and recall.

Naive Bayes Classifiers

Naive Bayes is a probabilistic classifier based on Bayes’ Theorem, assuming that all
features (words) are independent of each other (hence “naive”).

Bayes’ Theorem:

Bayes’ Theorem:

P(X|C) x P(C)

P(C|X) = PO

Where:
C" Class (e.g., Positive, Negative)
X : Document (text)
P(C|X): Probability that document X belongs to class C'
(X|C): Probability of document given the class
(C): Prior probability of class
(

P
P
P

X): Probability of document (same for all classes, ignored in comparison)




Working Example:
Let’s classify a new sentence — “This movie is great.”

We calculate:

P(Positive|sentence) and P(Negative|sentence)

Whichever is higher, that label is assigned.

Types of Naive Bayes:

1. Multinomial NB: Used for word counts (common for text classification).
2. Bernoulli NB: For binary features (word present/absent).
3. Gaussian NB: For continuous data (not common in NLP).

Example (Python-like Logic):

sklearn.feature extraction.text CountVectorizer
sklearn.naive bayes MultinomialNB
sklearn.model selection train_test split

sklearn.metrics accuracy_score
texts = [

labels = [

vectorizer = CountVectorizer()

X = vectorizer.fit_transform(texts)
X train, X test, y train, y test = train test split(X, labels, test size- )

model = MultinomialNB()
model . fit(X train, y train)

predictions = model.predict(X test)

print( » accuracy_ score(y test, pred J/_ons))




Advantages:
« Simple and fast to train.

o Works well with small datasets.
« Performs surprisingly well for text classification.

Limitations:

« Assumes word independence (not true in real language).
« Cannot handle very complex relationships between words.

Deep Learning for NLP — Introduction
What is Deep Learning?

Deep Learning (DL) is a branch of Machine Learning (ML) that uses artificial neural
networks (ANNSs) with many hidden layers (hence “deep”) to automatically learn
representations (features) from raw data.

In NLP, Deep Learning helps machines understand and generate human language —
text, speech, and meaning — by learning from large text datasets.

Why Deep Learning for NLP?

Traditional NLP methods (like Bag-of-Words, TF-IDF, or Naive Bayes) rely on
handcrafted features, which often:

« Ignore word order and context.
» Struggle with large, complex datasets.

Deep Learning solves these by:

1 Learning features automatically from data.

1 Capturing semantic meaning (context, relationships, grammar).

1 Handling complex tasks like translation, summarization, and chatbots.



Neural Networks: The Foundation

Basic Structure:
A neural network consists of:

1. Input Layer — Takes data (e.g., word vectors).
2. Hidden Layers — Process features through weighted connections.
3. Output Layer — Gives final prediction (e.g., sentiment = positive/negative).

Each connection has a weight (w), and neurons use an activation function to introduce
non-linearity.

Activation Functions:

They help the network learn complex relationships.

Function Formula Purpose

1

Tie= For probabilities

Sigmoid

Tanh tanh(;c) Zero-centered activation

RelU Faster training, avoids vanishing gradient

How a Neural Network Learns:
1. Forward Propagation: Compute output using weights.
2. Loss Function: Compare output with true label (error).
3. Backward Propagation: Adjust weights to reduce error (using gradient descent).

This iterative process continues until the model’s performance improves.



Deep Learning in NLP Tasks

Deep Learning models can handle various NLP tasks such as:

Task Example Model Type

Sentiment Analysis Positive / Negative review CNN/RNN

Text Classification Spam / Not Spam CNN/RNN

Machine Translation English — French Seq2Seq (RNN)

Named Entity Recognition John lives in Delhi” — (Person, g ) o1y
Location)

Chatbots / Question i Transformer (GPT,

Answering Conversational Al BERT)

Word Representation: Word Embeddings

Before feeding text into neural networks, we must convert words into numbers.
Word Embedding:

A dense numerical vector that represents a word’s meaning and context.

Example:

9% ¢ 99 ¢ 99 ¢«

“king”, “queen”, “man”, “woman” — vectors close in space if meanings are related.

Common Techniques:
o Word2Vec — Learns vector representations from text.
« GloVe (Global Vectors) — Uses co-occurrence statistics.
o FastText — Considers subword (character-level) information.

These embeddings are the input features for deep learning models.

Advantages of Deep Learning in NLP

1 Automatically learns features (no manual feature engineering).
1 Handles large-scale data efficiently.



1 Understandscontext and sequence of words.
1 Providesstate-of-the-art accuracy for NLP tasks.

Limitations

1 Requireslarge datasets and computational power.
"} Harder to interpret (black box nature).

] Training can be slow.

1 NeedsGPU/TPU for high performance.

Simple Example Workflow:

tensorflow.keras.models Sequential

tensorflow.keras.layers Embedding, LSTM, Dense

model = Sequential(][
Embedding(input dim= , output dim=122, input length=100),
LSTM(54),

Dense(1, activation=

D

model . compile(optimizer= , metrics=[
model . summary()

Convolutional Neural Networks (CNNs)

Introduction:

A Convolutional Neural Network (CNN) is a deep learning model originally designed
for image processing, but it also works very well for text classification and NLP tasks.



CNNs can automatically extract important local features (like key phrases or n-grams)
from text without requiring manual feature engineering.

Basic ldea

CNNs use a special operation called convolution, which slides small filters (kernels)
across input data to detect important patterns.

In text, this means:

o Detecting key word patterns (e.g., “not good”, “very bad”)
« Capturing local dependencies between nearby words

CNN Architecture for NLP

Let’s go step-by-step
Step 1 - Input Layer

The input is a sequence of words, usually converted into word embeddings.
Example sentence:

“The movie was really good”

After embedding (say 5 words x 50-dim vector):
— A 5 x 50 matrix (rows = words, columns = embedding dimensions)

Step 2 — Convolution Layer

o Apply filters (kernels) that slide over the word embeddings.
« Each filter detects a specific pattern of nearby words (like a phrase).

Example:

29 ¢

o A filter size of 2 — detects 2-word patterns (“movie was”, “was really”)
o A filter size of 3 — detects 3-word patterns (“The movie was”)



Each filter produces a feature map — a numerical representation of detected patterns.

Step 3 — Activation Function

After convolution, an activation function (usually ReL.U) is applied to add non-linearity.

ReLU(z) = max(0, z)

This allows the model to learn complex relationships.

Step 4 — Pooling Layer
Pooling reduces the feature map’s size while keeping the most important information.

« Max Pooling: Takes the largest value (most important feature).
« Average Pooling: Takes the average of the region.

For NLP, 1D Max Pooling is most common — it helps capture the strongest feature from
each filter.

Step 5 — Fully Connected Layer

The pooled features are flattened into a vector and passed through one or more fully
connected (Dense) layers for final prediction.

Step 6 — Output Layer

Uses Softmax (for multi-class) or Sigmoid (for binary classification).
Example:

« Sentiment — Positive / Negative
o News category — Sports / Politics / Tech



Example CNN Architecture for Text Classification

Simple Python Example

tensorflow.keras.models Sequential

tensorflow.keras.layers Embedding, ConvlD, GlobalMaxPoolinglD, Dense

model = Sequential ([
Embedding(input dim= , output dim=100, input length=100),
ConviD(filters=122, kernel size=5, activation= N5
GlobalMaxPoolinglD(),
Dense(1, activation=

D

model . compile(optimizer= , metrics=[

model . summary ()

Advantages of CNN in NLP

1 Captureslocal patterns (n-grams) efficiently.
] Fast training (parallel computation possible).
1 Works well withshort and fixed-length texts.
1 Needs fewer parameters than RNNSs.

Limitations

1 Cannot easily capturelong-range dependencies between distant words.
1 Not ideal forsequential context understanding (for that, use RNNs or Transformers).



Recurrent Neural Networks (RNNSs)

Introduction:

A Recurrent Neural Network (RNN) is a deep learning model designed to handle
sequential data, where the order of input matters — like text, speech, or time series.

Unlike normal neural networks (which treat each input independently), RNNs have a
memory that captures information from previous inputs.

That makes RNNSs ideal for Natural Language Processing (NLP) tasks such as:
« Sentence classification
o Machine translation

» Text generation
« Speech recognition

The Need for RNNs in NLP

Text is sequential — the meaning of a word depends on previous words.
Example:

“He went to the bank to deposit money.”
“He sat on the bank of the river.”

The word “bank” has different meanings depending on the previous words.
So, we need a model that can remember past context — that’s what RNNs do.



Basic Working

An RNN processes an input sequence one element (word) at a time, while maintaining a
hidden state that stores information about previous steps.

At each time step &

ht = f(Wh - ht—1 + Wy - ¢ + b)

yf:Wy'hf‘l‘C

Where:
e Iy input at time £ (e.g., word embedding)
h;: hidden state (memory) at time t
Y2 output at time ¢
Wz, Wh, Wy: weight matrices

f: activation function (usually tanh or RelLU)

Recurrent Connection

The key feature:

The hidden state hth_tht depends on both current input and previous state ht—1h_{t-
1}ht—1.

That’s why it’s called “recurrent” — the network loops over time steps.

Unfolded RNN Representation

Each RNN cell passes its hidden state to the next — maintaining sequential
memory.



Types of RNNSs

Type Description Example Use
One-to-One Standard NN Image classification
One-to-Many  One input — Sequence output Image captioning
Many-to-One  Sequence input — One output Sentiment analysis

Sequence input — Sequence  Translation, Speech

Many-to-Many output recognition

Problems with Basic RNNs

Vanishing Gradient Problem:

When training long sequences, gradients (error signals) become very small —
the model forgets long-term dependencies.

Hence, basic RNNSs are not good at remembering context far back in the sequence.

Solutions: LSTM and GRU

To fix memory loss, two advanced RNN variants were introduced:

LSTM (Long Short-Term Memory):

« Uses gates (input, forget, output) to control information flow.
« Can remember information for longer sequences.

GRU (Gated Recurrent Unit):

o Asimplified LSTM with fewer gates (update and reset).
» Faster to train, performs similarly well.



Applications

Task Example

Sentiment Analysis Preghct positive/negative
review

Text Generation Generate new sentences
or poetry

Machine Translation English — French

Named Entity Recognition (NER) Etitea names, places,

Speech Recognition Convert audio — text

Example RNN Architecture in Python

tensorflow. keras.models Sequential

tensorflow. keras.layers Embedding, SimpleRNN, Dense

model = Sequential(]

Embedding(input dim= ,» output dim=128, input length=100),

SimpleRNN(64, activation= ),
Dense(1, activation=

D

model . compile(optimizer= , metrics=[

model . summary()

Advantages of RNNs

1 Can handle sequential data and context.
1 Useful for variable-length inputs.
1 Effective in NLP tasks like translation and speech.



Limitations

1 Difficult to train on long sequences (vanishing gradient).
1 Slow (can’t be fully parallelized).
1 Forget distant context.

(Solved by LSTM and GRU, and later by Transformers)

Classifying Text with Deep Learning

What Is Text Classification?

Text classification is the process of assigning a label or category to a given text using
machine learning or deep learning techniques.

Examples:

Spam Detection — Spam / Not Spam

Sentiment Analysis — Positive / Negative

News Categorization — Sports / Politics / Tech
Intent Detection — Booking / Inquiry / Complaint

Why Deep Learning for Text Classification?

Traditional ML models (Naive Bayes, SVM, Logistic Regression) rely on hand-crafted
features such as Bag-of-Words or TF-IDF.
These fail to capture:

« Context between words
o« Word order
« Long-range dependencies

Deep Learning models (CNNs, RNNs, LSTMs, Transformers) solve this by
automatically learning hierarchical and contextual features from text.



Deep Learning Workflow for Text Classification
Let’s go step-by-step
Step 1 — Data Preparation

o Collect labeled dataset (text + label).

o Example:
Text Label
“The movie was excellent” Positive
“I hated the acting” Negative

» Clean text (remove punctuation, lowercase, etc.).
« Splitinto training and test sets.

Step 2 — Text Representation
Convert text into numerical form using:

o Word Embeddings (Word2Vec, GloVe, FastText)
o Or use Embedding Layer in deep learning frameworks like TensorFlow/Keras.

Each word becomes a dense vector (e.g., 100 dimensions) capturing its meaning.

Step 3 — Model Selection

Depending on the nature of your data, choose a deep learning model:

Model Strength Typical Use

Short text / phrase
classification

Long sentences / time-based
data

CNN Captures local n-gram patterns

RNN/LSTM/GRU Captures sequential context

Combines local + sequential
features

Transformers (BERT,  Captures global attention &
GPT) context

Hybrid CNN + LSTM Sentiment analysis, reviews

State-of-the-art NLP tasks



Step 4 — Training the Model

Feed word embeddings into the network.

Network learns to map patterns — labels.

Use loss function like Binary Cross-Entropy or Categorical Cross-Entropy.
Optimize weights via backpropagation using optimizers like Adam or SGD.

el N =

Step 5 — Evaluation

After training, evaluate performance on the test set using:

o Accuracy
e Precision
e Recall

o F1-Score

Example: CNN-Based Text Classifier

tensorflow.keras.models Sequential

tensorflow.keras.layers Embedding, ConvlD, GlobalMaxPoolinglD, Dense

model = Sequential([
Embedding(input_dim= » output dim=128, input length=100),
ConviD( » 5, activation= Mo
GlobalMaxPoolinglD(),

Dense(1, activation=

D

model . compile(optimizer= , metrics=[
model . summary()

Used for binary classification (e.g., positive vs. negative).



Example: LSTM-Based Text Classifier

tensorflow.keras.models Sequential

tensortlow. keras.layers Embedding, LSTM, Dense

model = Sequential(]
Embedding(input dim= , output dim=160, input length=
LSTM(64),
Dense(1, activation=

D

model . compile(optimizer= , metrics=[

Used for longer text or sequence-dependent tasks.

Advanced Approach: Transformers

Modern models like BERT, RoBERTa, and GPT use self-attention to understand
relationships between all words in a sentence simultaneously.
They achieve state-of-the-art accuracy in most NLP classification tasks.

Example task:

BERT fine-tuned for sentiment analysis or spam detection.

Advantages of Deep Learning for Text Classification

1 Learns complex patterns automatically.

1 Captures context and sequence of words.

1 Performs better on large datasets.

1 Can be fine-tuned for domain-specific tasks.



Limitations

1 Requires large labeled datasets.

1 High computational cost (needs GPU).

1 Longer training time.

"} Harder to interpret (“black box” models).



UNIT -4

Information Extraction (IE): Overview

Definition:

Information Extraction (IE) is the process of automatically identifying structured
information (facts, entities, relationships) from unstructured text data such as articles,
blogs, reviews, or social media posts.

In simple words —

IE converts raw text into structured data that computers can understand and use.

Example

Input (Unstructured Text):
"Elon Musk founded SpaceX in 2002 and became the CEO of Tesla in 2008."

Output (Structured Information):

Entity 1 Relation Entity 2 Date
Elon Musk founded SpaceX 2002
Elon Musk became CEO of Tesla 2008

Steps in Information Extraction

1. Text Preprocessing

o Tokenization (splitting into words/sentences)

o Stopword removal

o Lemmatization or Stemming
2. Part-of-Speech (POS) Tagging

o ldentifies the grammatical role of words (noun, verb, adjective, etc.)
3. Named Entity Recognition (NER)

o Finds names of persons, organizations, locations, dates, etc.

o Example: “Apple” — Organization, “Tim Cook™ — Person



4. Chunking / Shallow Parsing
o Groups words into phrases (like Noun Phrases or Verb Phrases)
o Example: “the red car” — [NP the red car]
5. Relation Extraction
o Determines relationships between entities (e.g., works for, located in,
founded by).
6. Template Filling
o Extracted entities and relations are placed into predefined templates or
structured formats.

Applications of Information Extraction

« Search Engines — Extract key facts for quick answers.

« Question Answering Systems — e.g., Chatbots using structured info.

» Business Intelligence — Extract company, product, and price data.

« Social Media Monitoring — ldentify opinions, trends, or named entities.

« Medical Text Mining — Extract disease, drug, and symptom relationships.

Techniques Used

Method Description
Rule-Based Systems Use hand-written patterns or regex (e.g., “founded by”)
Statistical Models Use machine learning with annotated data

Deep Learning Use neural networks (e.g., BILSTM, BERT) for NER and relation
Models extraction

What is Chunking?

Definition:

Chunking (also called shallow parsing) is the process of grouping words into
meaningful phrases (like noun phrases or verb phrases) based on their Part-of-Speech
(POS) tags.

While POS tagging labels individual words, chunking combines them into higher-level
units.



Example

Sentence:

“The quick brown fox jumps over the lazy dog.”

POS Tags:

The/DT quick/JJ brown/JJ fox/NN jumps/VVBZ over/IN the/DT lazy/JJ dog/NN
Noun Phrase (NP) Chunking Output:

[NP The quick brown fox] [VP jumps] [PP over] [NP the lazy dog]

Purpose of Chunking
Chunking helps extract structured information by:
« ldentifying phrases (like subjects, objects, etc.)

« Simplifying sentence structure for further tasks
« Preparing text for Named Entity Recognition (NER) or Relation Extraction

Types of Chunks

Type Example Description

NP (Noun Phrase) The red car A noun with its modifiers

VP (Verb Phrase) Is running fast ~ Verb with adverbs or auxiliaries
PP (Prepositional Phrase) in the park Preposition with a noun phrase

ADJP (Adjective Phrase) very beautiful  Adjectives with modifiers



Chunking Process
1. Tokenization — Break text into words

2. POS Tagging — Assign parts of speech

3. Apply Chunking Rules — Define patterns using regular expressions based on
POS tags
4. Chunk Extraction — Identify and group phrases

Example in Python (using NLTK)

word tokenize, pos tag, RegexpParser

tokens = word tokenize(text)

tagged = pos tag(tokens)

grammar =

parser = RegexpParser(grammar)

chunked = parser.parse(tagged)
chunked.draw()

This will show a tree structure grouping the words into a noun phrase (NP).



Evaluating Chunkers

When you train a chunker using annotated data, you can evaluate its
performance using:

Metric Description
Precision % of correctly predicted chunks out of all predicted chunks
Recall % of correctly predicted chunks out of all actual chunks

F1 Score Harmonic mean of precision and recall

Chunking vs Parsing

Aspect Chunking Full Parsing

Depth Shallow (phrases only) Deep (full grammatical structure)
Speed Fast Slower

Purpose ldentify key groups (NP, VVP) Understand full syntax tree
Applications

« Information Extraction (e.g., identifying “organization names”)
Named Entity Recognition (NER)

Question Answering Systems

Machine Translation

Text Summarization

What is a Chunker?

A chunker is a model or a rule-based system that automatically detects and groups

phrases (like noun phrases, verb phrases) in a sentence after POS tagging.

In short:
Chunking = POS tagging + Pattern recognition for phrases



You can develop a chunker using:

« Rule-based (Grammar/Regex) approach
« Machine learning-based approach (trained chunkers)

Developing a Chunker

There are two main ways:

A. Rule-Based Chunker (Using Regular Expressions)
We define patterns using POS tags to identify chunks.

Example:
word tokenize, pos tag, RegexpParser
sentence

tokens = word tokenize(sentence)

tagged pos_tag(tokens)

chunk parser = RegexpParser(grammar)

chunked = chunk parser.parse(tagged)

print{chunked)
chunked.draw()




Explanation:

« <DT>? — Optional Determiner (like the, a, an)
e <JJ>* — Zero or more adjectives
e <NN>— Noun
So this rule captures noun phrases like “The beautiful red car”.

B. Machine Learning-Based Chunker
Uses supervised learning — you train a model with:

« Input: POS-tagged sentences
« Output: Chunk labels (e.g., “B-NP”, “I-NP”, “O”)

Example using NLTK’s built-in dataset:
nltk.corpus conll2e00
nltk.chunk ChunkParserI

nltk.chunk.util tree2conlltags
nltk.tag UnigramTagger

train_sents = conll2ee0.chunked_sents( » chunk_types=[ D
test sents = conll2000.chunked sents( » chunk types=| D

train data = [[(t, c) w, t, c tree2conlltags(sent) ] train_sents]

( E

(self, train sents):

train data = [[(E, c) w, £, c tree2conlltags(sent) ] sent train_sents]

self.tagger = UnigramTagger(train data)
(self, sentence):
pos_tags = [pos (word, pos) sentence]
tagged pos = self.tagger.tag(pos_tags)
chunks = [(word, pos, chunk) ({word, pos), (pos2, chunk)) zip(sentence, tagged pos)]
nltk.chunk.conlltags2tree(chunks) J




This type of model learns patterns automatically from annotated corpora like

CONLL 2000.

Evaluating Chunkers

Once a chunker is developed, its performance must be evaluated on a test set.

Evaluation Metrics:

Evaluation Metrics:

Metric Formula
Precision

Recall

F1-Score

Where:

e TP (True Positive): Correctly identified chunks
* FP (False Positive): Incorrectly predicted chunks
* FN (False Negative): Missed correct chunks

Evaluating in NLTK

nltk.corpus conll2060

nltk.chunk UnigramChunker

train_sents = conll2000.chunked sents(

test sents = conll2eee.chunked sents(

chunker = UnigramChunker(train_sents)

print(chunker.evaluate(test sents))

Meaning

% of predicted chunks that are correct

% of true chunks that were correctly found

Balance between predision and recall

, chunk_types=[ 1
, chunk types=[ 1)



OUTPUT

Importance of Evaluation
» Helps measure accuracy and reliability of the chunker.

« Allows comparison between different approaches (rule-based vs ML).
o Ensures robustness for downstream tasks like NER or relation extraction

Recursion in Linguistic Structure

Definition:

In linguistics, recursion means a phrase can contain another phrase of the same type
— this allows language to express infinite ideas with finite rules.

In simple words:

Recursion lets sentences embed smaller sentences or phrases inside themselves.

Example

1. Basic sentence:
“The cat sat.”

2. Add a phrase (recursion in noun phrase):
“The cat on the mat sat.”

3. Add another phrase:



“The cat on the mat near the door sat.”

Here, each noun phrase (“cat”, “cat on the mat”, “cat on the mat near the door”) contains
another noun phrase — recursion in structure.

Why Recursion Happens

Language has hierarchical structure — a sentence (S) is made up of phrases (NP, VP,
PP), and those phrases can contain other phrases of the same kind.

For example:

5 > NP VP

NP > DT N | NP PP
PP » P NP

Because NP — NP PP, it allows recursion —
A noun phrase (NP) can contain a prepositional phrase (PP), and that PP
again can contain another NP.

Example Tree
For the sentence:
“The book on the table in the room is mine.”
(s
(MP

(NP (DT The) (NN book))
(PP (IN on)

(NP
(NP (DT the) (NN table))
(PP (IN in)
(NP (DT the) (NN room))))))
(v (VBZ is) (PRP$% mine)))




Here you can see:

o NP contains a PP

« That PP contains another NP

« That NP again contains another PP
— recursive pattern!

Importance of Recursion in NLP

Task Role of Recursion

Parsing Helps build hierarchical syntactic trees.
Information Extraction  Allows extraction from nested phrases.
Machine Translation Handles nested and dependent clauses correctly.
Question Answering Helps understand embedded questions.

Text Summarization Recognizes main vs subordinate clauses.

Recursion in Grammar Rules (CFG)

In Context-Free Grammars (CFGs) — used in NLP parsers — recursion appears
naturally in rules:

Example:

NP > NP PP

PP > P NP

If the grammar allows a non-terminal (like NP) to appear on both sides of a
rule, it’s recursive.



Recursion in Programming (Python + NLTK Example)

You can visualize recursive linguistic structure using NLTK’s parser:

grammar = CFG.fromstring(

)

parser = nltk.ChartParser(grammar)

sentence = [ 5 £ :

tree parser.parse(sentence):
print(tree)

tree.draw()

This creates a recursive parse tree — showing nested NP and PP structures.

What is Named Entity Recognition (NER)?

Definition:

Named Entity Recognition (NER) is the process of identifying and classifying named
entities in a text into predefined categories such as person names, organizations,
locations, dates, monetary values, etc.

In simple words —
NER finds real-world objects in text and labels them with their type.



Example:
Sentence:

“Elon Musk founded SpaceX in 2002 and lives in Texas.”

NER Output:

Entity Type

Elon Musk PERSON

SpaceX ORGANIZATION
2002 DATE

Texas LOCATION

Steps in Named Entity Recognition

1. Text Preprocessing

o Tokenization

o Stopword Removal

o Lemmatization
2. Part-of-Speech (POS) Tagging

o ldentifies grammatical roles (noun, verb, etc.)
3. NER Tagging

o Detects entities and assigns category labels

o e.g., New York —» LOCATION, Google — ORGANIZATION
4. Post-Processing

o Merge or refine overlapping entities.

Common Named Entity Types

Category Examples

PERSON Elon Musk, Narendra Modi
ORGANIZATION Google, Gurugram University
LOCATION Delhi, India, Ganga River
DATE/TIME 12th February 2005, 5 PM

MONEY %5000, $10 million



Category Examples

PERCENT 25%, 80 percent
PRODUCT iPhone, Tesla Model S
EVENT Olympic Games, World War Il

Approaches to NER

A. Rule-Based (Pattern Matching)

« Uses regular expressions and hand-written linguistic rules.
« Example: Words ending with Ltd. - ORGANIZATION
« Works well for simple domains but fails on complex language.

B. Machine Learning-Based

« Train models using labeled corpora (supervised learning).
« Uses features like capitalization, word shape, POS tags, etc.
o Common algorithms:

o Hidden Markov Model (HMM)

o Conditional Random Fields (CRF)

o Support Vector Machines (SVM)

C. Deep Learning-Based (Modern NER)

« Uses neural networks to automatically learn features from text.
o Common architectures:

o BILSTM + CRF

o CNN+LSTM

o Transformers (BERT, RoBERTa, GPT, etc.)
« Highly accurate and widely used today.



Example in Python (using spaCy)

nlp = spacy.load(

ent doc.ents:
print(ent.text, , ent.label )

Output

Elon Musk -» PERSON
SpaceX -+ ORG

a.

Texas -+ GPE

(GPE = Geopolitical Entity, i.e., country, city, or state)



Applications of NER

Application Example

:Er:fr;Tt?gr?n Extract company names, dates, and locations from news articles
Question Answering  Identify key entities in user queries

Summarization Highlight people, places, and organizations in summaries
Search Engines Improve relevance by recognizing entity names

Understand entities like names, dates, and locations from user

Chatbots messages

What is Relation Extraction (RE)?

Definition:
Relation Extraction (RE) is the process of detecting and classifying semantic
relationships between entities identified in a text.

In simple words —
After NER finds who and what,
Relation Extraction finds how they are related.

Example
Sentence:
“Elon Musk founded SpaceX in 2002.”
From NER:
o FElon Musk — PERSON

e SpaceX — ORGANIZATION
e 2002 — DATE



Relation Extraction Output:

Entity 1 Relation Entity 2 Extra Info
Elon Musk founded SpaceX 2002

So, RE helps us capture (Subject, Relation, Object) triplets —
— (Elon Musk, founded, SpaceX)

Steps in Relation Extraction

1. Preprocessing
o Tokenization, POS tagging, and dependency parsing.
2. Named Entity Recognition (NER)

o ldentify entities like PERSON, ORGANIZATION, LOCATION, etc.

3. Relation Detection

o ldentify whether a relationship exists between two entities.

4. Relation Classification

o Classify the type of relation (e.g., founded by, born in, located in, etc.).

Types of Relations

Category Example

Organizational “Elon Musk founded SpaceX.”

Geographical “Taj Mabhal is located in Agra.”

Personal “Barack Obama is married to Michelle Obama.”
Professional “Sundar Pichai is CEO of Google.”

Temporal “World War II ended in 1945.”

Relation Type
founderOf
locatedIn
spouseOf
worksFor
endedIn



Approaches to Relation Extraction

A. Rule-Based (Pattern Matching)

« Uses manually defined patterns or regular expressions.
o Example rule:
If pattern matches “X founded Y — Relation = founderOf

Example:

“Steve Jobs founded Apple.”
— (Steve Jobs, founderOf, Apple)

1 Simple but [ fails for complex sentence structures.

B. Supervised Machine Learning

« Uses annotated datasets (text with labeled relations).
« Each entity pair becomes a training example.
« Features used: POS tags, dependency paths, word distance, etc.
o Common algorithms:
o Support Vector Machines (SVM)
o Decision Trees
o Naive Bayes
o Logistic Regression

] More flexible than rules, but [ ] needs large labeled data.

C. Deep Learning / Neural Models

« Automatically learn features from raw text.
o Common architectures:
o CNN (captures local word patterns)
o RNN/LSTM (captures long dependencies)
o Transformer-based models like BERT, RoBERTa



Example:
Sentence: “Bill Gates founded Microsoft.”
— Model output: (Bill Gates, founder_of, Microsoft)

1 Very accurate
] Requires high computation and large data.

Relation Extraction Example (using spaCy)

spacy
spacy .matcher

nlp = spacy.load(

doc = nlp(text)

ent doc.ents:
print(ent.text, ent.label )

matcher = Matcher(nlp.vocab)

pattern = [{ : b {
matcher.add( » [pattern])

matches = matcher(doc)

match id, start, end matches:

span = doc[start:end]

print( » span.text)




OUTPUT

Elon Musk PERSON
SpaceX ORG

Relation: Elon Musk founded SpaceX

Applications of Relation Extraction

Field Example

Knowledge Graphs 5ﬁgsvf5dn$ét3égslhatlon, Entity) triples for Google

Question Answering “Who founded Tesla?” — extract (Elon Musk, founderOf,
Systems Tesla)

Information Retrieval Enhance search by linking related entities

Biomedical NLP Extract relations like (Drug, treats, Disease)

News Analysis Identify relations between people, events, and organizations

Analyzing Sentence Structure

Analyzing sentence structure in NLP means understanding how words are organized
and related in a sentence.

It’s about syntax — the rules and patterns governing how words combine to form
meaningful sentences.

Before extracting meaning, we need to know what role each word plays (subject, verb,
object, modifier, etc.) and how phrases are structured.



Some Grammatical Dilemmas

In natural language, many sentences can be ambiguous or have structures that are
difficult for computers to parse. These are called grammatical dilemmas.

A. Syntactic Ambiguity

« A sentence can have more than one valid parse.
o Example:

“I saw the man with a telescope.”
Two interpretations:

1. 1 used a telescope to see the man.
2. The man | saw had a telescope.

« Computers must decide which structure is intended, which is tricky without
context.

B. Part-of-Speech Ambiguity

« A word can have multiple possible POS tags depending on context.
« Example:

“Book the flight.” — Book = verb
“The book is on the table.” — Book = noun

« NLP systems must disambiguate words based on sentence structure.

C. Attachment Ambiguity

« Ambiguity about which part of the sentence a phrase modifies.
o Example:

“She saw the boy with the binoculars.”

o Did she have the binoculars?
o Or did the boy have them?



« This is common with prepositional phrases (PPs).

D. Coordination Ambiguity

« Ambiguity in sentences with “and,” “or,” or other conjunctions.
o Example:

“He saw the man and the woman with a telescope.”

o Does with a telescope modify both man and woman or just woman?

E. Modifier Scope Ambiguity

« Ambiguity arises from adjectives or adverbs.
« Example:

“Old men and women were present.”

o Are both men and women old? Or only the men?

F. Ellipsis / Missing Elements

« Some sentences omit words but are still understandable to humans.
o Example:

“I ordered pizza, and John [ordered] pasta.”

o NLP must infer the missing verb.

Why These Dilemmas Matter in NLP

« Ambiguities cause parsing errors, which affect downstream tasks:
o Information Extraction — Misidentified entities or relations
o Machine Translation — Incorrect translations

o Question Answering — Wrong answers due to misinterpreted structure



« Handling these dilemmas often requires:
o Contextual information (e.g., surrounding sentences)
o Probabilistic models (like probabilistic CFGSs)
o Deep learning approaches that learn likely structures

Syntax in NLP

Syntax is the set of rules that governs how words are combined to form grammatically
correct sentences.

In NLP, syntax helps analyze the structure of a sentence, rather than just its words,
allowing systems to understand relationships between words.

Syntax = the structure of the sentence. Semantics = the meaning of the sentence.

Why Syntax is Important

Syntax is crucial in NLP because many tasks cannot rely solely on individual words.
Understanding sentence structure helps in:

1. Disambiguating Meaning
o Example (Attachment ambiguity):

“I saw the man with a telescope.”
Syntax helps determine whether with a telescope refers to “I”” or “the

2

man .

2. Information Extraction
o Helps extract structured knowledge like entities and relationships.
o Example:

“Elon Musk founded SpaceX.”
Knowing subject-verb-object structure — (Elon Musk, founded,
SpaceX)

3. Machine Translation
o Accurate translation requires understanding sentence structure, not just
word-by-word translation.
4. Question Answering & Chatbots



o Understanding syntax helps identify who did what to whom.
o Example: “Who founded SpaceX?”
= Needs subject-verb-object parsing.
5. Summarization
o Syntax helps identify main clauses versus subordinate clauses to
summarize key information.
6. Grammar Checking
o Detect errors in writing using syntactic rules.

Syntax vs Semantics

Aspect Syntax Semantics
Focus Structure of sentence Meaning of sentence
Example “The cat sat on the mat.” Understanding that a cat is sitting on a mat

Role in NLP Parsing, POS tagging, chunking NER, Relation Extraction, QA

How Syntax is Represented in NLP

1. Parse Trees
o Trees represent hierarchical structure of sentences.
o Example: Noun Phrases (NP), Verb Phrases (VP), Prepositional Phrases
(PP).
2. Context-Free Grammar (CFG)
o Defines rules for generating valid sentences (we’ll study this in next
topic).
3. Dependency Parsing
o Represents syntactic relationships as dependencies between words.
o Example: In “Elon Musk founded SpaceX”, founded — root, Elon Musk —
subject, SpaceX — object.



Context-Free Grammar (CFG)

Definition:

A Context-Free Grammar (CFG) is a set of rules used to generate all possible
sentences in a language.

It defines how words and phrases combine hierarchically to form valid sentences.

CFG is called “context-free” because the rules apply regardless of surrounding words.

Components of a CFG
A CFG consists of four parts:

1. Terminals (X)
o The actual words in the language.
o Example: “dog”, “barks”, “the”, “runs”
2. Non-terminals (N)
o Syntactic categories or placeholders for phrases.
o Example: S (sentence), NP (noun phrase), VP (verb phrase), PP
(prepositional phrase)
3. Start Symbol (S)
o Represents a complete sentence. Parsing starts from this.
o Usually s is used.
4. Production Rules (P)
o Define how non-terminals can be expanded into other non-terminals or
terminals.
o Example:

S+ NP VP

NP -» DT NN
VP » VB NP




How CFG Works (Example)

Goal: Generate the sentence — “The cat sleeps”

Grammar Rules:

Derivation:

+ NP VP
+ DT NN VP
NN VP

VP
VB

This shows how a CFG generates a valid sentence step by step.

Why CFG is Useful in NLP

1. Parsing Sentences
o Helps build parse trees that represent the hierarchical structure of
sentences.
2. Syntax Analysis
o Ensures sentences follow grammatical rules.



o Detects errors or ambiguity.
3. Supports Downstream NLP Tasks
o Information Extraction — identify subjects, objects, relations
o Machine Translation — map structure to target language
o Question Answering — understand syntactic relations
4. Recursive Structures
o CFG naturally handles recursion, e.g., nested noun phrases or prepositional
phrases.

Example CFG Parse Tree

Sentence: “The cat sat on the mat”

/\
The cat sat P NP

| /7 \
on DT NN

the mat

Shows sentence structure with NP, VP, PP, DT, NN, VB.

Key Notes

o CFGissimpler than full natural language grammar but powerful enough for
many NLP tasks.



« Ambiguities still exist — multiple parse trees may be possible.
« Can be extended with probabilities — Probabilistic CFG (PCFG), which helps
choose the most likely parse.

What is Parsing?

Definition:
Parsing is the process of analyzing the syntactic structure of a sentence according to a
grammar (like CFG).

In NLP, parsing helps determine how words in a sentence are related and constructs a
parse tree showing hierarchical structure.

Why Parsing is Important

1. Understanding Sentence Structure
o ldentifies subjects, verbs, objects, and modifiers.
2. Disambiguation
o Resolves structural ambiguity in sentences.
o Example: “I saw the man with a telescope” — different parse trees for
different interpretations.
3. Supports Downstream NLP Tasks
o Information Extraction — identifies entities and relationships
o Machine Translation — maps structures between languages
o Question Answering — identifies what action involves which entity

How Parsing Works with CFG
Step 1: Start with the Start Symbol
o Typically s (sentence)

Step 2: Apply Production Rules

o Expand non-terminals (like NP, VP, PP) using CFG rules



Step 3: Match Terminals
« Continue expansions until all words in the sentence are matched
Step 4: Build Parse Tree

« Each expansion forms a node in the tree
« Leaf nodes are the actual words (terminals)

Example CFG

Grammar:

-+ NP VP
» DT NN | DT JJ NN

- VB NP | VB PP

+ P NP

Sentence:

“The quick fox jumps over the dog”



Parse Tree:

s
/A
NP VP

VA T W AN
DT JJ NN VB PP

A
the quick fox jumps P NP
| 7\
over DT NN

|
the dog

Types of Parsers

1. Top-Down Parsing
o Start from start symbol and try to generate the sentence.
o Checks if CFG rules can produce the sentence.
2. Bottom-Up Parsing
o Start from words in the sentence and try to combine them to form higher-
level phrases until reaching the start symbol.
3. Chart Parsing
o Efficient method storing partial parses in a chart to avoid redundant
computations.
4. Probabilistic Parsing (PCFG)
o Assigns probabilities to CFG rules
o Chooses the most likely parse tree in case of ambiguity



Parsing in NLP Tools (Example with NLTK)

grammar = CFG.fromstring(

parser = nltk.ChartParser(grammar)

sentence = [

tree parser.parse(sentence):
print(tree)

tree.draw()

This generates the parse tree, showing how the sentence is constructed from the CFG.




